Objectives

• Review the epidemiology, clinical presentation and diagnosis of aplastic anemia in adults

• Discuss the therapy of aplastic anemia in adults
Introduction

• Bone marrow failure syndrome
 – pancytopenia
 – bone marrow hypocellularity

• First described by Paul Ehrlich in 1888
Introduction

• Epidemiology
 – likely ~ 2/million in Western populations
 • Studies from Spain, France, UK, Scandinavia and Brazil

 – higher incidence in Asia

 – gender ratio 1:1

 – 2 age peaks
 • young adults, elderly
Incidence of Aplastic Anemia, Spain

<table>
<thead>
<tr>
<th>Age at diagnosis (years)</th>
<th>2-14</th>
<th>15-24</th>
<th>25-44</th>
<th>45-64</th>
<th>≥65</th>
<th>N. of cases</th>
<th>Total incidence(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. of cases</td>
<td>17</td>
<td>25</td>
<td>22</td>
<td>28</td>
<td>31</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>Incidence</td>
<td>1.92</td>
<td>2.83</td>
<td>1.52</td>
<td>2.56</td>
<td>5.89</td>
<td>2.54</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. of cases</td>
<td>12</td>
<td>11</td>
<td>15</td>
<td>31</td>
<td>43</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>Incidence</td>
<td>1.43</td>
<td>1.41</td>
<td>1.00</td>
<td>2.58</td>
<td>4.89</td>
<td>2.16</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. of cases</td>
<td>29</td>
<td>36</td>
<td>37</td>
<td>59</td>
<td>74</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>Incidence</td>
<td>1.68</td>
<td>2.16</td>
<td>1.26</td>
<td>2.57</td>
<td>5.33</td>
<td>2.34</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Number of cases per one million people per year.

Clinical Presentation

• Secondary to decreased blood cells
 – anemia (low red cells)
 • fatigue, chest pain and shortness of breath with exertion, palpitations
 – thrombocytopenia (low platelets)
 • bleeding, bruising, petechiae
 – leukopenia (low white blood cells)
 • infections
Approach to Aplastic Anemia

• Confirmation of the diagnosis

• Define the disease
 – acquired or congenital
 – cause
 – disease severity
Approach to Aplastic Anemia

• Traditional definition
 – pancytopenia with hypocellular bone marrow
 – normal hematopoietic tissue replaced by fat cells
 – absence of abnormal infiltrate in the bone marrow or increased reticulin (fibrosis or scar)
 – at least 2 of hemoglobin < 100 g/L, platelets < 100, absolute neutrophil count < 1500
Approach to Aplastic Anemia
Approach to Aplastic Anemia

• Is the diagnosis really aplastic anemia?
 – Exclude:
 • hypocellular MDS
 • myelofibrosis
 • lymphoma
 • atypical mycobacterial infection
 • anorexia nervosa
Approach to Aplastic Anemia

• Is the disease an inherited bone marrow failure syndrome?
 – Fanconi anemia
 – Dyskeratosis congenita
 – Shwachman-Diamond syndrome
Approach to Aplastic Anemia

• What is the cause?
 – idiopathic
 – post-hepatitic
 – drugs, chemicals, environmental exposures
 – PNH
 – pregnancy
 – thymoma
Approach to Aplastic Anemia

• How severe is the disease?
 – Severe aplastic anemia
 • Bone marrow cellularity < 25%
 • 2/3: ANC < 500, platelets < 20, reticulocytes < 20

 – Very severe aplastic anemia
 • As above except ANC < 200

Adapted from Marsh ASH Education
2006
What is the cause of idiopathic aplastic anemia?

• Immune mediated disease

• Variability
 – environmental exposures
 – patient risk factors
 – differences in immune response
Immune destruction of hematopoiesis

Treatment

• Depends on severity of disease
 – Nonsevere aplastic anemia
 • follow expectantly
 – Severe aplastic anemia
 • immunosuppression versus allogeneic bone marrow transplant
Immunosuppression

• Reducing the activation or effectiveness of the immune system

• If aplastic anemia is an autoimmune disease, “shutting down” the immune system is logical
Immunosuppression

• Standard therapy
 – antithymocyte globulin (ATG) and cyclosporin
Immunosuppression

• ATG
 – injection of human lymphocytes into an animal
 – animal makes antibodies against the lymphocytes
 – the antibodies attack the lymphocytes in the patient
ATG

• Side effects
 – allergic reaction
 – cytokine release syndrome
 – serum sickness
 – infections
Cyclosporin

- Inhibits T lymphocytes

- Side effects
 - kidney problems
 - high blood pressure
 - metabolic problems
 - infections
Immunosuppression

<table>
<thead>
<tr>
<th>Study Group</th>
<th>N</th>
<th>Median Age</th>
<th>Response (%)</th>
<th>Relapse (%)</th>
<th>Clonal Evolution (%)</th>
<th>Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>84</td>
<td>32</td>
<td>65</td>
<td>19</td>
<td>8</td>
<td>58(11 yrs)</td>
</tr>
<tr>
<td>EGBMT</td>
<td>100</td>
<td>16</td>
<td>77</td>
<td>12</td>
<td>11</td>
<td>87(5 yrs)</td>
</tr>
<tr>
<td>NIH</td>
<td>122</td>
<td>35</td>
<td>61</td>
<td>35</td>
<td>11</td>
<td>55(7 yrs)</td>
</tr>
<tr>
<td>Japan</td>
<td>119</td>
<td>9</td>
<td>68</td>
<td>22</td>
<td>6</td>
<td>88(3 yrs)</td>
</tr>
<tr>
<td>NIH</td>
<td>104</td>
<td>30</td>
<td>62</td>
<td>37</td>
<td>9</td>
<td>80(4 yrs)</td>
</tr>
</tbody>
</table>

Adapted from Young et al Blood 2006
Late Events After Immunosuppressive Therapy

Relapse after ATG + Cyclosporin

• High risk of relapse
 – 20-40%

• Treat with second course of ATG
 – 50-60% will respond to second course

• No prospective trial comparing horse to rabbit ATG; choice depends on:
 – whether a severe reaction occurred with first course
 – centre practice
 – drug availability
Bone Marrow Transplant

• Background
 – curative therapy

 – 1961
 • first successful transplant using a syngeneic (identical twin) donor
 – 1972
 • first successful transplant using a matched, unrelated donor
 – 1976
 • randomized prospective trial showed survival advantage of matched related donor over standard of care
Bone Marrow Transplant

- Transplanted bone marrow stem cells replaces the failing bone marrow cells

- Stem cells reconstitute all the normal cells
 - new immune system
 - new red cells
 - new platelets
Bone Marrow Transplant

- Potential cure but...

- Complications
 - side effects from chemotherapy
 - graft rejection
 - graft versus host disease
 - long term complications
Bone Marrow Transplant

• Acute complications
 – nausea, vomiting, diarrhea, mucositis
 – organ damage
 – infections
 – bleeding
Bone Marrow Transplant

• Graft failure
 – central problem in aplastic anemia
 – reported in up to 5-15% of patients

 – why?
 • conditioning regimens are nonmyeloablative
 (chemotherapy not as strong as other transplants)
 • immune activity rejects the graft
Bone Marrow Transplant

• Graft versus host disease
 – acute versus chronic
 • At least 20-40% of patients

 – can be difficult to treat and associated with significant morbidity and decreased quality of life
Long-term Complications

- Toxicities from treatment regimens
- Immune deficiency
- Autoimmune syndromes
- Infectious complications
- Endocrine disturbances
- Chronic GVHD
- Second malignancies
- Cognitive dysfunction
- Psychosocial adjustment
- Decreased quality of life
Bone Marrow Transplant

• Source of stem cells
 – unmanipulated bone marrow first choice

 – peripheral blood stem cells
 • faster engraftment, but increased GVHD and lower survival

 – umbilical cord blood
 • little data
Syngeneic Allogeneic BMT

• Ideal donor is an identical twin
 – no need for graft versus tumor effect
 – minimizes risk of graft failure
 – no GVHD

 – survival rates of 70-90%
Sibling Allogeneic BMT

• Few prospective studies

• Important to consider sibling BMT early

• Steady improvement in outcome over time
Sibling Allogeneic BMT
Sibling BMT compared to Immunosuppression

Effect of patient age on survival by treatment group

Sibling Allogeneic BMT

• Recommendations
 – younger adults with a sibling donor should be treated with allogeneic BMT over immunosuppressive therapy
 – transfusions prior to transplant should be minimized
 – conditioning generally with cyclophosphamide + ATG
Matched, unrelated BMT

- Little prospective data
- Higher morbidity and mortality than sibling BMT
- Improved survival over time
Impact of Better HLA Matching in MUD BMT

Matched, unrelated BMT

• Recommendations
 – at least 2 courses of immunosuppression should be given before considering proceeding with a MUD BMT
Approach to Treatment

1. Excluded inherited bone marrow failure syndrome
2. If disease progression to severe AA, follow algorithm for SAA
3. Red cell and/or platelet transfusion dependent

- No
 - Observe and monitor FBC, or treat if patient's lifestyle dictates
- Yes
 - If become transfusion dependent
 - ATG(horse)+CSA
 - Response at 4 months
 - No
 - 2nd ATG (rabbit/horse)+CSA
 - No response at 4 months
 - Follow algorithm for severe AA
 - Yes
 - Maintain CSA as for severe AA

Marsh, J. Hematology 2006;2006:78-85
Approach to Treatment

Age of patient

≤ 40yr
- HLA identical sibling
 - Yes: HLA id sib BMT
 - No: ATG (horse)+CSA

Response at 4 months
- Yes: Maintain on CSA while FBC rising, then very slow taper, often over one/more years
- No: 2nd ATG (rabbit/horse) + CSA

Response at 4 months
- Yes: MUD available
 - No: Adequate performance status
 - Yes: Adequate performance status
 - No: Supportive therapy
 - Yes: MUD BMT
 - No: Options

1. 3rd ATG if previous response to ATG
2. CRP using novel IST
3. BMT using CRP with UCB

Marsh, J. Hematology 2006;2006:78-85
• Thank you!

• Questions?